EURECOM@MediaEval 2017: Media Genre Inference for Predicting Media Interestingness

نویسندگان

  • Olfa Ben Ahmed
  • Jonas Wacker
  • Alessandro Gaballo
  • Benoit Huet
چکیده

In this paper, we present EURECOM’s approach to address the MediaEval 2017 Predicting Media Interestingness Task. We developed models for both the image and video subtasks. In particular, we investigate the usage of media genre information (i.e., drama, horror, etc.) to predict interestingness. Our approach is related to the affective impact of media content and is shown to be effective in predicting interestingness for both video shots and key-frames.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LAPI at MediaEval 2017 - Predicting Media Interestingness

In the following paper we will present our contribution, approach and results for the MediaEval 2017 Predicting Media Interestingness task. We studied several visual descriptors and created several early and late fusion approaches in our machine learning system, optimized for best results for this benchmarking competition.

متن کامل

RUC at MediaEval 2017: Predicting Media Interestingness Task

Predicting the interestingness of images or videos can greatly improve people’s satisfaction in many applications, such as video retrieval and recommendations. In this paper, we present our methods in the 2017 Predicting Media Interestingness Task. We propose deep ranking model based on aural and visual modalities which simulates the human annotation procedures for more reliable interestingness...

متن کامل

The IITB Predicting Media Interestingness System for MediaEval 2017

This paper describes the system developed by team IITB for MediaEval 2017 Predicting Media Interestingness Task. We propose a new method of training based on pairwise comparisons between frames of a trailer. The algorithm gave very promising results on the development set but did not impress on test set. Our highest achieved MAP@10 on test set is 0.0911 (Image subtask) and 0.0525 (Video subtask...

متن کامل

UNIFESP at MediaEval 2016: Predicting Media Interestingness Task

This paper describes the approach proposed by UNIFESP for the MediaEval 2016 Predicting Media Interestingness Task and for its video subtask only. The proposed approach is based on combining learning-to-rank algorithms for predicting the interestingness of videos by their visual content.

متن کامل

GIBIS at MediaEval 2017: Predicting Media Interestingness Task

This paper describes the GIBIS team experience in the Predicting Media Interestingness Task at MediaEval 2017. In this task, the teams were required to develop an approach to predict whether images or videos are interesting or not. Our proposal relies on late fusion with rank aggregation methods for combining ranking models learned with different features and by different learning-to-rank algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017